An efficient modified neural network for solving nonlinear programming problems with hybrid constraints

Authors

  • Mortezaee, M. Faculty of Mathematical Sciences, Shahrood University of Technology, Shahrood, Iran
  • Nazemi, A. Faculty of Mathematical Sciences, Shahrood University of Technology, Shahrood, Iran
  • Sukhtsaraee, S. Faculty of Mathematical Sciences, Shahrood University of Technology, Shahrood, Iran
Abstract:

This paper presents ‎‎the optimization techniques for solving‎‎ convex programming problems with hybrid constraints‎.‎ According to the saddle point theorem‎, ‎optimization theory‎, ‎convex analysis theory‎, ‎Lyapunov stability theory and LaSalle‎‎invariance principle‎,‎ a neural network model is constructed‎.‎ The equilibrium point of the proposed model is proved to be equivalent to the optimal ‎‎solution of the original problem‎. ‎It is also shown that the proposed network model is stable in the Lyapunov sense and it is globally convergent to an exact optimal solution of the original problem‎. ‎Several practical examples are provided to show the feasibility and the efficiency of the‎method.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

An efficient one-layer recurrent neural network for solving a class of nonsmooth optimization problems

Constrained optimization problems have a wide range of applications in science, economics, and engineering. In this paper, a neural network model is proposed to solve a class of nonsmooth constrained optimization problems with a nonsmooth convex objective function subject to nonlinear inequality and affine equality constraints. It is a one-layer non-penalty recurrent neural network based on the...

full text

A New Neural Network for Solving Nonlinear Programming Problems

In this paper a new neural network is proposed to solve nonlinear convex programming problems. The proposed neural network is shown to be asymptotically stable in the sense of Lyapunov. Comparing with the existing neural networks, the proposed neural network has fewer state variables and simpler architecture. Numerical examples show that the proposed network is feasible and efficient.

full text

Integrating Differential Evolution Algorithm with Modified Hybrid GA for Solving Nonlinear Optimal Control Problems

‎Here‎, ‎we give a two phases algorithm based on integrating differential evolution (DE) algorithm with modified hybrid genetic algorithm (MHGA) for solving the associated nonlinear programming problem of a nonlinear optimal control problem‎. ‎In the first phase‎, ‎DE starts with a completely random initial population where each individual‎, ‎or solution‎...

full text

Using an Efficient Penalty Method for Solving Linear Least Square Problem with Nonlinear Constraints

In this paper, we use a penalty method for solving the linear least squares problem with nonlinear constraints. In each iteration of penalty methods for solving the problem, the calculation of projected Hessian matrix is required. Given that the objective function is linear least squares, projected Hessian matrix of the penalty function consists of two parts that the exact amount of a part of i...

full text

A Recurrent Neural Network for Solving Strictly Convex Quadratic Programming Problems

In this paper we present an improved neural network to solve strictly convex quadratic programming(QP) problem. The proposed model is derived based on a piecewise equation correspond to optimality condition of convex (QP) problem and has a lower structure complexity respect to the other existing neural network model for solving such problems. In theoretical aspect, stability and global converge...

full text

A dynamic programming approach for solving nonlinear knapsack problems

Nonlinear Knapsack Problems (NKP) are the alternative formulation for the multiple-choice knapsack problems. A powerful approach for solving NKP is dynamic programming which may obtain the global op-timal solution even in the case of discrete solution space for these problems. Despite the power of this solu-tion approach, it computationally performs very slowly when the solution space of the pr...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 16  issue 3

pages  1- 20

publication date 2019-10

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023